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ABSTRACT

The sound scattering due to an ambient noise field. approx-
imated by a squared cosine function, is considered for infinite
rigid and elastic cylinders and rigid spheres. For the cylinders, it
is assumed that the acoustic wave front is parallel to the axis of
the cylinder (normally incident). For this assumption, a closed
form expression for the scattered sound field-to-incident ambient
noise field (signal-to-noise) ratio is obtained not only for the co-
sine squared directivity, but for any arbitrary directivity which
can be expressed in terms of a Fourier series. For the sphere, it
is assumed that the noise is circumferentially symmetric which
leads to a closed form expression for the signal-to-noise ratio due
to a cosine squared directivity.

ADMINISTRATIVE INFORMATION

This work was carried out under joint funding from the Acoustic Measurement Facility

Improvement Program (AMFIP) and the Office of Naval Research (ONR) Exploratory Devel-

opment Program. The work was carried out at the Carderock Division of the Naval Surface

Warfare Center during January 1992 to September 1992.

INTRODUCTION

The ambient noise of the sea 1 is generated by steady noise sources, such as surface winds,

wave interactions, and distant ships as they transit shipping lanes, and by transient sources,

such as rain and the calls of marine animals. Although steady sources persist for extended

periods of time, their variability leads to the randomness of the ambient noise. Intermittent

or transient noise sources also contribute to this variability, but cause greater uncertainty in

expected noise levels since their occurrences are less predictable. Since the ambient noise is

caused by a variety of sources, its characteristics change throughout the frequency spectrum,

with different sources becoming dominant contributors. Different characteristics are also ob-

served at different locations. For instance, tidal currents are more pronounced in coastal waters

than in the center of the ocean. In addition to frequency and location, the noise characteris-



tics are affected by changes in sound transmission conditions such as those caused by seasonal

changes.

Even though there are a wide variety of sources which can create ambient noise, the two

primary contributors are surface noises created by winds and distant shipping noise. We con-

sider frequency ranges high enough that contributions due to shipping noises can be ignored

since they exist at much lower frequencies. It has been shown that surface noise contributions

extend over a wide range of frequencies and on average are circumferentially symmetric and

well approximated by a cos2 0 distribution. 2 Since the contributions from the surface exceed

those from the sea bottom, the noise field will be directional.

The ambient noise field may be thought of as a source which, when incident upon targets

such as cylinders, will cause a scattered pressure field. There are two primary concerns about

this scattered ambient field. If the scattered pressure is distinguishable from the ambient noise

source, it may be possible to use the noise field as a means of imaging the targets.3 The other

concern iq the effect that the ambient noise scattering may have upon the measurement of these

canonical scatterers in scientific experiments.

MATHEMATICAL FORMULATION

The mathematical formulation of the problem begins with a few basic assumptions; mea-

surements are made in a small frequency range and the linear principle of superposition can

be applied. Keeping these criteria in mind, the pressure, PN, at position R due to an ambient

noise distribution can be expressed as a superposition of plane waves, Pi exp[ik-R]. Each plane

wave has its own propagation direction and amplitude Pi, but they share the same wavenumber

k. Therefore, PN (R) can be expressed as

p,(R) PA,. (W) exp[ikIJR] di', (1)

where PA (Q') is the pressure amplitude with angular dependence expressed in the appropriate

2



coordinate system, k' is the vector wavenumber in the direction of propagation, and d(Q' repre-

sents a solid angle integration for the coordinate system.

The scattered pressure from a surface excited by an incident plane dave of amplitude P,

may be formally expressed as P1G(R; Q2') where G is the impulse response function or Green's

function for the surface. Applying the superposition principle, the scattered pressure, Ps. at R

due to an ambient noise field is cast in the form

I!

p (R P( ()')G(R;!Q')da'. (2)

The effects of the ambient noise can be determined by measuring the signal-to-noise ratio.

S/N, defined by

S/N P(R)- pN(R) 2

where

P(R) = PN(R) + ps(R) + p. (R). (4)

is the pressure detected by the hydrophone at R in the presence of the target, PN (R) is the

pressure detected by the hydrophone in the absence of the target, p, (R) is the scattered am-

bient pressure due to the target, and p0 (R) is any other observable pressure. The measured

signal-to-noise ratio is then

S/N = Ip,(R) + po(R) 2
p, (R) I'

If the contribution of the scattered noise is large enough, the ambient field can be used for pas-

sive imaging. Far from the scattering surface (i.e. kR > 1), the scattered pressure will dirnmin-

ish significantly as a result of geometrical spreading, and the other observable pressures can be

3



well estimated by using Eq. 5. Yet if measurements are made close to the scatterer. the scat-

tered noise and other observable noise may not be distinguishable so that the measurements

may not be statistically significant.

Since the signal-to-noise ratio is a quantity of interest, we square the expressions for p, (R)

and ps(R) to obtain

Ips (R)12 = 1f P.a (')Pf (Q") exp[ikR] exp[-ik".R] dfl'df?", (6)

and

IPs (R)12 = JJ P. (0i')P:(Q")G(R; f')G*(R; !Q")dQ2'df2". (7)

Due to the randomness of the noise field, the mean square pressures, (1pN,(R)1 2) and (1p, (R)12).

hold more physical meaning than a single measurement of pN (R) and ps (R). Applying this

averaging results in

(IPN (R)12 ) = JJ(PA (i')P,(f"))exp[ik'.R exp[-ik".R] df'dRY", (8)

and

(1p = 1 (PA ')P5 (Q"))G(R; ( )')G*(R; £"dW2'd$2". (9)

The term (PA (S)P(1(Q")) can be expressed as a directivity function V(Q', Q?") by

(PA(f2')Pp(* ")) = IP, 12 .D(pi', 11"), (10)

4



where P, is a normalization factor. Applying this to Eqs. 8 and 9 results in the signa-lto-no)ise

ratio

(S/IN) ff D(Q', Q")G(R; Q')G*(R; Q")dQ2'dQ?"
S ff )(Ql', Q") exp[ikR] exp[-ik".R] dQ'df2"

There are two simple directivity functions which do not represent true ambient noise fields.

yet are still instructive. The first of these is

D,(n' Q") = 6(' - l,)b(Q" - 0 1), (12)

which is the directivity for one incident plane wave propagating in the f, direction. The src-

ond is

vi..(P , sll) = 'D, (13)

which indicates no preferred direction and represents an isotropic noise field. A more practical

assumption used throughout this paper is that the noise field contains no correlation between

angles. This is equivalent to saying

vg(f', Q") - D(Q')b(Q' - f'"), (14)

which simplifies the signal-to-noise ratio to

(SN, f 'D(1T)G(R; 1')a" (R; 1')dR' (1,5)
f V(11)dn'

5



CYLINDRICAL SCATTERERS

INFINITE RIGID CYLINDER

In cylindrical coordinatb, a waveý traveling perpendicularly to the z axis in the direction ;'

with amplitude Pi can be represented by 4' 5

pic(R,¢0, 0') = Piexp[ikRcos(O'- 0)]

= 00
= Pi I: inJ.(kR)ein(O'-o),

where (R, 0) is the location of the receiver, k is the wavenumber, and J, is the ntth order cvlin-

drical Bessel function. When an infinite rigid cylinder of radius a is excited by a normally inci-

dent plane wave, the scattered pressure is given by 4

00

,=-"= E J'(ka)nH (kR....n(O ') (17)
H1(ka)

where H, is the cylindrical Hankel function of n t order and the primes on the Bessel and Han-

kel functions represent differentiation with respect to the arguments of these functions.

When more than one normally incident plane wave excites this cylinder, the principle of

superposition can be exploited. With this in mind, the normally incident field representing a

spatially continuous noise field of amplitude P,, (0') is represented by

PN(0) = PA(0')exp[iknRcos(O' - 0)] df'. (18)

The average incident pressure squared, (IP, (¢)12), due to this continuous noise source is then

73r/2 f73r/2<l.()l)= /d¢' Y

* exp[ikR cos(O' - 0)] exp[-ikR cos(4/" - 0)].

6



In the same manner, the scattered pressure due to this continuous noise sourcP ; represented

by

ps(+) = -JPA(4) Z iJ"(ka) H ((0=" P". i nw ,( e - Q) d(20)

.=-0 H,(ka)

Thie average scattered pressure squared, (1Ps (0) 12), is subsequently represented by

(Ips(,0)l2) = 3_r/2 d' 3w/2 dý" (P, (0')P,(")
7p3r/2 1 31r/2

= Z H[,i(ka) Hn(kR)etn(€ -) (21)
nl--OO

0 ir J(ka) H,(kR)eir(46'-O)
r H'(ka)

Define Tn by

R inJ,(ka) r trT, J(ka)n (kR) (22)
Hn(ka)

and define 7)(0', 0"), the directivity function associated with the noise field, by

PD(',0") _P. i 2 (23)

Using these definitions, Eqs. 19 and 21 simplify to

S= I_ cdk' =/ d3,r(",3', ")exp[ikR(cos(O' - q) - cos(qV" - 0))] (24)IP, 12w2d ' / O" (f

and

P2 = ./dO' d+"D(O', T T, ('-- (2,5)
P1 2 i2 w/2n= --- T(25

7



respectively. The next assumption made is that the noise field is spatially uncorrelated so that

,"= 2(€')6(€' - "). (26)

Applying this to Eq. 24 yields

(1p (0)I12 ) 31r/2
Ip( 1)2 f 7r/2d€,E)(¢')exp[ikR cos(t€' - 0)] exp[-ikR cos(c€' - 6 )7

f/' (27)

ir /2

Applying Eq. 26 to Eq. 25 and interchanging the order of the summations and integrations re-

sults in

R[ = 1 T-d (28)

1P, I n=-oo r=-o T-fr/2E

INFINITE ELASTIC CYLINDRICAL SHELL

The scattered pressure from an infinite elastic cylindrical shell excited by an incident plane

wave propagating in the direction 0' is given by4

0=-i 0 in (kR) ,'(ka)- 2pc (29)
n =-0 H'(ka) I (Zn + zn)7kH'(ka (2)9

The modal structural impedance Z, is defined by

- ipcp h 114 _ S12(1 + n 2 + #2n 4 ) +0 2n 6

-Z" a12 - n2 (30)

8



where h/a is the thickness to radius ratio, /3' = (h/a)2 /12 is a jiondimensional thickness pa-

rameter, Q = wa/cp is a nondimensional frequency parameter, c, is the compressional wave

speed, and p, is the density of the structure. The specific acoustic impedance z,, is defined by

H,,-/ (ka)
Zn = ?PC H'(ka), (31)

where p is the fluid density.

By defining TE to be

E _ i.Hn(kR) [ 2pc

H'(a n( - (Z + zn)rkaH(ka)

Equations 27 and 28 of the rigid cylinder case may be used for an elastic cylindrical shell by

substituting TE for T,. In the formulations to follow, T, will be used to represent Tn and Tn,

resulting in generalized equations.

GENERAL DIRECTIONAL DIRECTIVITY

We will assume that the noise is normally incident on the cylinder so that the directivity

function in cylindrical coordinates is dependent only on the angle 4. Although this is not the

most realistic case, it is a solvable problem and serves as a first estimate. A general directional

directivity function of this sort, D(O'), can be expressed in terms of its Fourier series expansion

as 00
= ameira*', -- r/2 < 0' < 7r/2

7D(0') '20=-0, (33)I bmetm', 7r/2 < 0' < 31r/2,

9



where am and bm are the Fourier series coefficients which are determined for the ambient field

of interest. For this directivity function, the average noise strength becomes

(IP" 12) 0 r20 r2e
(N)am demo'd¢I + bm, e im'd¢', (34)

'12 M =-_ J-7r/2 M=_0 J/2

and the average scattered field yields

(1rP 12) 0, 00,e(n-r)f eit0-r+/m2' d¢/
-p i= 1: E Tn, e am

n=-1-o r=-oo m=-oo0 - r/2
c(35I

+ E bm e
m=--00 r2

In Eq. 35, Tn represents either TR or T,-, depending upon the case of interest.

Upon the simplifications of Appendix B, these expressions become

(IPN2) = 7r(ao + bo) + 2 E (am - bin) (-1)-i)/2 ,od (36)

Ip,12  m=--- m

and

(IPS 12) 00I1- _ =• TE (an-+ bi)eira nTnTn+m

+92 E (am-bin) 1 E TT,* (37)
lu=-o0 ft=-oo 1-=-oo

e-i(n-r)o( )(-,-r+m,-)/2
(rz - r + mTS) 6 n-r+m,odd.

Isotropic Noise Field

An isotropic noise field is one in which the noise is evenly distributed in all directions. The

directivity, Dio(O'), is therefore a constant so that the Fourier series coefficients are a0 = bo

10



and am = b.. = 0 Vm > 1. The resulting isotropic noise field is given by

1P, 12,- = 21ra 0  (38)

and the isotropic scattered field is given by

(Ips 1) i" o(•I' = 2ra0 TT. (39)

n= -o

Since the incident field is independent of angle, the scattered pressure is also angularly inde-

pendent which is seen in Eq. 39. The signal-to-noise ratio resulting from an isotropic field is

subsequently

(IPS 1) iso 00

12 ). T TT, . (40)

Cosine Sauared Directivity

An example of a physically significant directivity is one which can be represented as a di-

rectional cos 2 0 function.2 The directivity function in cylindrical coordinates is thus prescribed

by

T)¢)= f ar + •6cos24', -ir/2 < qS' S ir/2 (41)
a +7 cos24', ir/2 < 0' < 3<r/2.

The Fourier coefficients for this specific field are ao = a + P/2, a- 2 = a2 = 0/4,

bo = a + -y/2, and b-2 = b2 = 7/4. Applying these coefficients to Eq. 36 yields

(IPN 12(4

V 12)= 7[2a + (P• + -)/2]. (42)

11



Applying the same coefficients to Eq. 37 yields

(IPS 12) cIp 12 =7r[2 ± + ( 3 + -y)/ 2 ] Y T.T,

n=Oo£00
e 2io,,-2i+2 + e-

7r(/3 + iy)/4 Z [e57 rTT+± + ' "TnT.-2 j
"=-0 (43)

- (3- y)/2 E E TnT;*e(-T)"- (- I-

1__ 2 -+ 1 1,_~d
(n-r--2) r- + (n-,rf+ 2)]

resulting in a signal-to-noise ratio of

(P,5 12) 00 T + + f Z [e2i¢TT,+2 + e-0 T2T1 -2(IP ~l) X F_ n 2(4a 9 +-Y7) E =_
(IPNo n=_ 0l-

n00 T00
-7(4B -+ +Tn =• -Z TrT*e-'("-r)46(-1)("-"-1)/2 (44)

[ 1 2 + 1 1
(n-r-2) n-r (n- r +2)]

Note that the first term of the right hand side of this equation is just the signal-to-noise ratio

of the isotropic field.

NUMERICAL SIMULATIONS

Measured values of a surface directivity led to a, 0, and - values of 0.33/75.4, 1.0/75.4,

and 33.0/75.4 respectively." Our numerical simulations were carried out using the MATLAB

program cylinf-rig.elas which can be found in Appendix F. These simulations are for ka val-

ues of 5, 20, and 40 respectively and kR values of 16ka and 32ka which represent experimental

measurement distances.

12



Before performing numerical simulations on an elastic cylinder, the impedance term of

Eq. 32 is expressed in terms of the non-dimensional variables a/h. c/c,,, and p/p, so that

T kR) =IH,,( [ J(k) + 2i c Nn(Q)] (4)H'(ka) 7 cp D n(Sl)

where

N.(SI) = (!' - n'), (46)

and

Dn(fl) = H,,(ka)Sl( ?2 -n 2 ) - PHn(ka)[•t4p-Q 2 (1 + +3 2n 4 ) +/02n6]" (47)

For our simulations, the non-dimensional variables were given values of a/h = 100, cP/c 3.5.

and P./p = 7.5

Since we deal mainly in target strength, we have plotted 10 log[(Ip8 12)/(IpN 12)] with respect

to angle for infinite rigid cylinders and infinite elastic cylindrical shells. In

Figs. 1, 2, and 3, all solid lines indicate rigid results while all the dashed lines indicate elastic

results. For each figure, the outer pair of curves is the function evaluated at

kR = 16 * ka, while the inner set of curves is an evaluation at kR = 32 * ka. For high ka, the de-

crease in horizontal scattering (0 = -7r/2 and 0 = 7r/2) becomes more pronounced and in both

the rigid and elastic cases, the foward scattering from 0 = 0 is greater than the backscattering

from this direction. In a comparison of the elastic and rigid scattering, the foward scattering is

more dominant in the elastic case for small ka. In each figure it is also seen that the difference

between the 16 * ka case and the 32 * ka case is on the order of 3 dB as would be expected when

comparing cylindrical scattering at distances which differ by a factor of two.

13



SURFACE
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-"10dB
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Fig. 1. 10 log[V(O)] for the cosine squared directivity function with a~, 63,

and -y values of 0.33/75.4, 1.0/75.4, and 33.0/75.4 respectively.

4 indicates the direction of propagation (solid) and the direction

from which the wave comes (dashed). The center of the plot indi-

cates the axis of the cylinder.
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SURFACE

.................

I 5dB p

Fig. 2. 1O log[(Ip$ 12 )/(IpM 12)] for infinite rigid cylinders and elastic cylin-
drical shells evaluated at ka = 5. The outer solid(dashed) line

corresponds to the rigid(elastic) result for kR = 16 * ka. The in-

ner solid(dashed) line corresponds to the rigid(elastic) result for

kil = 32 * ka. The center of the plot indicates the axis of the

cylinder.
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SURFACE

....................... ........ ......... ...

7r/2 ...

1.- 0'dB

Fig. 3. 1O logt(Ip, 12) (IPN 12)1 for infinite rigid cylinders and elastic cylin-
drical shells evaluated at ka = 20. The outer solid(dashed) line

corresponds to the rigid(elastic) result for kR = 16 * ka. The in-

ner solid(dashed) line corresponds to the rigid(elastic) result for

kR = 32 * ka. The center of the plot indicates the axis of the

cylinder.
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SUR.FACE

7r 2 . . . . . . . .. . . . .. . . . . . . . . . ... .... .... .. .... . . . . .. . . . .. 7r/ 2

T-10jdB

...... . 1 5d B

7r

Fig. 4. 10log[(1p5, I2 )/(Ip, I2I for infinite rigid cylinders and elastic cylin-
drical shells evaluated at ka =40. The outer sohid(dashed) line
corresponds to the rigid(elastic) result for kR = 16 * ka. The in-
ner solid(dashed) line corresponds to the rigid(elastic) result for

kR = 32 * ka. The center of the plot indicates the axis of the

cylinder.
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RIGID SPHERE

The incident pressure, Pic, in spherical coordinates for a plane wave propagating in the

positive z direction is given by4 ,5

pi,c(R, 0) = Pi explikR cos 01

00 (48)
= Pi Z(2n + 1)i"P,(cos8)j.(kR),

rt=0

where Pi is the amplitude of the wave, and (R, 0) indicates the location of the observation point

with 0, the azimuthal angle, measured from the positive z axis. P,, is the n th order Legendre

polynomial and j,, is the nth order spherical Bessel function. Since the wave is propagating in

the z direction, there is no circumferential angular dependence. The scattered pressure, p,, due

to this incident wave striking a rigid sphere of radius a is

00

p.(R,0) = -PE + 1)2, PIcos/?(ka) h1,(kR), (49)

where h, is the nth order spherical Hankel function, and the primes indicate derivatives with

respect to the arguments.

For a general result we consider a plane wave propagating in the (a', 0') direction which is

viewed from the (8, 0) direction where q5 and 0' represent circumferential angles. Let V' indicate

the angle between the two directions given above. The relation between 0 and the other angles

is

cos t = cos 0 cos 0' + sin 0 sin 0' cos(O - 0'). (50)

The angle b now replaces the 0 of Eqs. 48 and 49 so that the Legendre polynomials become

P,,(costk) rather than P.(cos6). Applying Eqs. 3 to 5 of Appendix A to P,,(cosOb) changes the
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general incident and scattered pressures to

pi,r,(R, 0,6, 0', 0') = Pi exp[ikR(cos 0 cos 0' + sin 0 sin 0' cos(c, - 4'))]. (51)

* and

p.(R,O,0,6', 0') = -Pi 1 E EmX"',"nP(")(cos9)P"(cosO')cos[m(p - 0')] (52)
n=O m=O

respectively. Xm,n is defined to be to be

X.,M = (2n + 1 )(n -m)! TS (53)
(n + m)!

where Ts is defined in terms of spherical bessel functions as

h•= (ka)

in the same manner as the rigid cylindrical case. en indicates the Neumann function defined in

Eq. 77 of Appendix A. From this point we suppress the S superscipt.

Equations 51 and 52 are the incident and scattered pressure due to one plane wave. As in

the cylindrical formulation, the principle of superposition is used to generalize to the situation

of a spatially continuous noise field. The continuous incident and scattered pressure become

(,) ( J P. (0', 0') exp[ikR(cos 6 cos 0' + sin 0 sin 6' cos(¢ - 0'))]dfl' (55)

and

"0 

n

"=--O m--



where the solid angle integration dQ' is given by df' = sin 9'd8'd0' and P. (0', O') is the direc-

tional amplitude for the wave. The average incident pressure squared at any point is indicated

by

(IPN( 0', ) 12) sin O'd9'd' sin 9"dO"dO"(P, (9', ,jP (of, ,b"))

exp[i kR(cos 0 cos 9' + sin 0 sin 9' cos(q - 0'))] (57)

exp[-ikR(cos 0 cos 0" + sin 0 sin 0" cos(O - 6"))].

Similarly the average scattered pressure squared at any point is indicated by

OP., (9, 4)2 00 sin 9W'd9'd/1 sin 9"d9"dqY(Pj 9' k)("4')
10 10 0 fl

00n0
n=O m---O

f j j kX;,kPNCO (Os)Pf (COS 9") cos[k(o~ - Of')].
j=O k=O

Let the correlation between the pressure amplitudes be defined as

(P, (0', 4/)P(C", '")) = IP, 12D(0' 4)', 8", ","), (59)

where D(O', Of, 0", 4") indicates the directivity function associated with the noise field. As in

the cylindrical case we assume that the pressure fields from different directions are uncorrelated

so that the directivity function reduces to

D(O', O', 0", 0") = D(9', 0')b(x) = D(O', Of) 6(9' - 0")W(o' - o")
sin' Of(60)
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Applying these definitions to Eqs. 57 and 58 yields

2lP• (0 0) 12) = sinO'dO'd$'V(O', ')IPi Joz

* exp[ikR(cos 0 cos 9' + sin 0 sin 'cos(o - C'))]

* exp[--ikR(cos 0 cos 6' + sin 0 sin ' cos( 0 -

=o jirj sin O'dO'D(O', 0'),

and

o1p,'(0, 0)1,) 00 n k 62
(p/(9~ 2 ) - 'E Z m kmEXknmX;,kPma(cosO)Pjk Coso)1(nm'jk). (62)

1P 1I n=O m=O j=O k=O

where

1(n, m, k) d)'dO' sin O'P(cos O')P (cos 0')(', (63)
Jo J((63)

cos[m(€ - 0')] cos[k(€ - 0')].

CIRCUMFERENTIALLY SYMMETRIC DIRECTIVITY

In the case that the directivity is circumferentially symmetric, V(G', 0') - V(O'), the result-

ing average noise field is

1(012 = 2ir V(0') sin O'd9'. (64)

After the simplifications of Appendix C have been made, the scattered pressure field reduces to

(tps ( R, Oq, 0)I12) O0 00 min[n,j]

A= 27r Ej Z(2n + 1)(2j + 1)T.T, E S-jm,,- (65)

IPJ2 =0=0 m=0
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where

(n - in)! (jM)! )M6
SnIn (n + m)! (j -m! P•(cosO)P!"(cosO)I8,(n,m,j M) (66)
S~o~m = • + in+ )! (j +m)

and

Ie,(n,m,j,k) = jsinO'Pm(cos ')Pfk(cos')-D(O')dO'. (67)

For every pair (nj), there is also a pair (j,n) which gives the same S,.. However, T,1TJ be-

comes TjTJ*. By introducing a change to the summation limits, the expression for tht scattered

pressure becomes

(IPS 12)-, o -" 2n 1)[ ,T *j
(Ip 12 = Ir E E(2n + 1)(2j + 1)[T.T,' + TjT,•]•(,,_) L SJM., (68)

n=O j=O m=0

Cosine Squared Directivity

We define V(8') as we did in the case of the cylinder, but give it circumferential symmetry.

Therefore

a + cos2 0', 0 < 0' < 7r/2 (69)
a + Cos 29 ' 7r/2 < 0' < 7r.

The average noise field for this directivity becomes

(Ipm(, )12) r 7ros /2 ]
(IpI(,1')2  = 2r sinO'dG' + Cos60'sinO'dO'+ J sinIPkl Ofo ,/2 .(0

= 21r[2a + (3 + -j)/3].
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After the simplifications of Appendix E have been made, the average scattered pressure be-

comes

(IPS 12) 0
=47raZE(2n+ 1)TnTn*

*1TT~ F, fmPy-(COSG)P,7mcS)(l-m+1 1 +m+)
m0TTn(o (92n +3) (n -rn)!

+ ZLTnT.-~2 + Tn- 2T1 n1

n2

+ 2ir( + -y). n- nr)

00 n-2

+ Z[nT~~ ~ mP~m Cos6P~m Cos6 (n m)(n + in)!

e m= -'Co ()nT(CS)2n1) (n- m- 2)!

0C n-i .

E[j Tnjod[T +: e jTm P emPnm (Co)Pf(Cos
n=1 70 m=

oo n-Ij-

+ bZ6+j,dd[T-Tj* + T 1T,] _ E'(COS)Pj '(COS 0 )
n=1j=I m=0

- (ni - mn + 1)(j- + mYPn+lij-i,m

+ E E bnt3,odd [T. T, + Tj T,*,] En mPn-(Cos 0) P m-(Cos 0)
n=2 j=1 M=O

*(n + m)(j1-(m + m),I-,

cc n-i 3

+ E 6 n+j,odd[Tn~j* + TiTn*] emPn-m (cos O)Pj-m (cos 0)
n=21 = M=O

*(n + m)(j + M)Pnil,j...,m.
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Dividing Eq. 71 by Eq. 70 yields the proper expression for the signal-to-noise ratio for a cir-

curnferentially symmetric cosine squared directivity.

NUMERICAL SIMULATIONS

As with the cylinders, we have plotted 10 log[(1ps 12 )/(1PN 12)] with respect to azimuthal an-

gle for a rigid sphere in a circurnferentially symmetric noise field. We use the samecoefficients

of the cosine squared directivity so that a = 0.33/75.4, P = 1.0/75.4, and -Y = 33.0/75.4. it

should be noted that these values of a, 6, and -1 result in a normalized noise coi dition which

reduces Eq. 70 to unity. Our numerical simulations were carried out using the MATLAB pro-

gram sph.rig-dir which is in Appendix F. The simulations are for ka values of 5, 20, and 40 re-

spectively and kR values of 16ka and 32ka.

In Figs. 4, 5, and 6, all solid lines indicate the function evaluated at kR = 16 * ka while

dashed lines indicate an evaluation of the function at kR = 32 * ka. For high ka, the decrease

in horizontal scattering (0 = ir/2)becomes more pronounced and the foward scattering from

0 = 0 is greater than the backscattering from the same direction. In each figure it is also seen

that the difference between the 16 * ka case and the 32 * ka case is on the order of 6 dB as would

be expected when comparing spherical scattering at distances which differ by a factor of two.

CONCLUSION

An expression was obtained for the signal-to-noise ratio due to scattering from an infinite

rigid cylinder or an infinite elastic cylindrical shell subjected to a normally incident ambient

noise field. This solution is applied to the specific case of isotropic fields and to the case of

noise fields which can be expressed by a squared cosine function. Similar methods were also

applied to obtain the signal-to-noise ratio due to the scattering from a rigid sphere subjected to

such a noise field with the assumption of circumferential symmetry.

The effect of the ambient field is to smooth the scattering function which results from a
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single incident plane wave. There is still a larger foward scattering than back scattering. but

the typical lobes observed from one incident plane wave are no longer distinguishable due to

the contributions from all the directions.

The limitations of these results arise from the assumption that the noise field in the cylin-

drical case is assumed to be normally ;ncident to the cylindrical surface. It is expected that

similar procedures can be applied to obtain results for a more realistic situation. It is also ex-

pected that similar mathematical techniques can be applied to other directivity functions and

to the case of an td.,.stic spherical shell.
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SURFACE

.. . . . .. .. .... J

........ . ..... ... .......... ..... .... ....... . ..... ....... r/2

;-3OdB'-

-.25dB

..................

Fig. 5. 1O log[(IpS 12)/(Ipv 12)] for a rigid sphere evaluated at ka =5. The
solid line corresponds to IcR = 16 * ka and the dashed line corre-

sponds to kR = 32 * ka.
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SURFACE
90

.. 0. .. .. ....... ....... ..... r/2

. . . . . .. .. . . - . .. . .. ..

V ý-35dB*-

V.. xZd

Fig. 6. 1Olog[(Ip" 12 )/(jpNI 2 )] for a rigid sphere evaluated at ka =20.

The solid line corresponds to kR = 16 * ka and the dashed line
corresponds to kR = 32 * ka.
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SURFACE
=00

.... ... .... .... .... .... ... .... .... ... .... . 0............................ .............. 7 /

Y..

Fig. 7. 1t0log(Ip5 12)/(IPN' 12)] for a rigid sphere evaluated at ka =40.

The solid line corresponds to kR = 16 * ka and the dashed line

corresponds to kR = 32 * ka.
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APPENDIX A

MATHEMATICAL IDENTITIES

INTEGRALS OF eino

2 )O ''= 2drb,0, (72)

d+ -,odd (73)

i - /2 7

and

1 
3 

f/2

/2 eu?1-0'd04/ b', - -(1)7 o45,dd. (74)

PROPERTIES OF ASSOCIATED LEGENDRE FUNCTIONS7

P,(cos 4') = Pn(cosG cos e' + sin OsinO' cos(O - 0'))

=--e (n- m)! Pn(cos O)PV,(cos 0') cos[m(- -0)], 
(75)E •(-n + m)!

where P, are the associated Legendre functions defined by

Ptm (X) = (-1)mn(1 - X2)m/ Pn(X), (76)
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and e,,, indicates the Neumann function defaied by

EM 1, if M=O; (77)
2, otherwise.

(78)

Pn(X)Pj(X)dx 2 (n + m)! bnj (79)
(2n + 1) (n - m)!

Xpn'(X) Kn - m + 1)PT+l(x) + (n + m)Pn'jj(x)], (80)
(2n + 1)

and

(-I)M (n - m)! -'(X)

(n + m)! Pn'(X) = Pn 
(81)
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APPENDIX B

EVALUATION OF THE SCATTERED PRESSURE DUE TO A CYLINDER

IN AN AMBIENT FIELD WITH A GENERAL DIRECTIONAL DIRECTIVITY

The integrations of Eqs. 34 and 35 can be evaluated using Eqs. 73 and 74 of Appendix A.

Applying these to Eq. 34 with q = m results in

wIPI - am (7rbm,O + 2(1) M 6m,odd)

+ E bm 7rm,O - 2 ( 1 )M / 2 6modd (82)
m=-00

- r(ao + bo) + 2 Z (am - bm) ( M )lm1)/2 ',odd"

m= -00

Applying the same equations to Eq. 35 with 77 = n - r + m yields

2 00 00

(1p, 12 == =- T"Te-i("-r)
I',II n=-oo r=-oo

0 am lrn-r+m,O + 2 -)- n--r+modd (83)
E_ n- r+ m

+ E bm 7r6n-r+m,o - 2 6n-'r+modd)]
Mn=-00 n-r+m

Using the fact that 6n-r+m,O = 6n-r,-mi Eq. 83 simplifies to

(IPs 12) 00 0
='2 E (am + bmleim TnTn+m

I m=-00 oo

+2 E (am-bin) Z > nTA (84)
m=-oo n--oo r=-oo

e-i("-r)o (-l)("n-"+m-l)I2 6 n-r+modd

(n - r + m)
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APPENDIX C

E•AýLUATION OF THE SCATTERED PRESSURE FROM A RIGID SPHERE

DUE TO A GENERAL CIRCUMFERENTIALLY SYMMETRIC DIRECTIVITY

As a result of circumferential symmetry, I can be sepafated in the following manner.

I(n,m,j,k) = Io,(n,m,j,k) - I0,(rn, k) (85)

where

Ie,(n,m,j,k) = j sin O' P(cos'I)PjL(cosO')D(0''()d0' (86)

and

p2 7

I0,(m, k) =] cos[m(€ - 0')] cos[k(€ - €')]dO'. (87)

Rewriting the integrand of 0, (m, k) as

cos[m(O - 0')] cos[k(O - 0')]= (88 e)e-'(,

where

S= {m + k, -(m + k),m - k, -(m - k)} (89)

and applying Eq. 72 of Appendix A yields

I0 (' ) 11 dt02r -'•

S((m+k),O + 6-(m+k),O + 6 (m-k),O + 6 -(m-k),o) (90)

- 7r(bm,obk,o + 'Sm,k).
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Therefore, for a circumferentially symmetric noise field, the scattered field from a rigid sphere is

obtained by applying this separation to Eqs. 62 and 63. The result is

(1p (, 0 0 12 =7r00 00

+ E~ E S-OtOncs)P~oOIn Sj 0) ~ ,m) (1
IPI In=O j=O m

+27r f5 2 mxn,moX*,mPn(cosO)Pj'(cos6)I8t(l, m,ji)

n=O )=O m=O

Rewriting this in terms of T,,

Ipj(,81 )2 ) = 27r 5 5(2n + )(2j + )TnT ,' m Snn~J] (92)
IPIn=0 j0 M=0

where

Snjm = (n + in)! (j-rnM)! (93
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APPENDIX D

INTEGRATION OF TWO ASSOCIATED LEGENDRE FUNCTIONS

OVER AN ARBITRARY RANGE CONTAINED IN [-1.1]

Consider the integral'

(x)P(x)dx (n + m)! (94

l . )d = 2n + 1 (n-rm)! b "'

where m < n and m < j. This is a well known integral, but when the integration limits are

different, the integration is not as easily determined. Therefore, we have derived an expression

for general integration limits.

The Associated Legendre functions satisfy the differential equation5

(1- x 2 )y" - 2xy'+ n(n +1) - }x y =0 (95)

which is equivalent to

d {(1 _ X2)y'} + n(n + I) 2y=O. (96)

Multiplying by (1 - x2) and substituting P,, and P71 for y, Eq. 96 becomes

(1 X2) d{(- _X2)P, l} + {(j -X 2 )1(n + )- m}P =0 (97)

and

(1_X)d {(j _ 2) ,}+ {J •)(j + 1) - } 0 , (s
=03 (98)
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where the primes indicate derivatives with respect to x' and the argument, x, of P' and P7 is

suppressed. Multiplying Eqs. 97 and 98 by P,' and P, respectively yields

X2)- T ( - )n'n+ -m) P,,P) 0 (99)

and

(1- 2)1 ((1 - 2)pj'} P .- + {( -z 2 )j(j + 1)-M) P7'Pp =0. (100)

When j a:id n are different, we subtract Eq. 100 from Eq. 99 and factor the (1 - x2) term to

obtain

T 
(101)

An application of the chain rule to the quantities (1 - x 2 )P[,j)(X)P(,7)(X) yields

dx j - )m'p7' = p-± f (1 '1)P" + (1- )pmP (02

Td d(1 (102)!

ar.d

d p• _a_ p•p = P36

Upon subtracting these equations we obtain

. .2_.. , _ ±Jj__2p. ,_

36



Substituting Eq. 104 into Eq. 101 yields

dT 2)[p = {J(j + 1)- n(n + 1)} PTP1 . (105)

Integrating this equation over the interval [a, b] which is contained in the interval [-1, 1] yields

P.(x)V?(x)dx x (1 ) 2)P•(X)P ) - P( ()](106)
. j(j + 1) - n(n + 1)

as a general expression for the integral of the product of associated Legendre functions. When

a = 0 and b = 1 this reduces to

flpm(\pm(zd = [P'(0)Pn'(0)- (' (0)P7())]
PTn (107)

j(j + 1)-n(n +1)

It should be noted that this integration is true for m < n and m < j. If m > n or m > j, then

the integral is zero. It should also be noted that when n = j, Eqs. 99 and 100 are the same. If

they were subtracted to obtain Eq. 101, the resulting equation would be 0 = 0. Therefore when

n = j the integral must be evaluated in a different manner.

The integrand of Eq. 94 is even so that

j P(x)P.(x)dx= 1 (n + m)!

JO mx) ~d =2n + 1 (n - ."10

Also, for n 6 j Eq. 94 can be rewritten as

Pm(x)Pj(x)dx = [1 + (-1)n+jl] j Pn(x)Pjl(x)dx = 0. (109)

Therefore when n + j is an even number

j P'(x)P m (x)dx =0. (110)
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Using these facts, Eq. 107 can be rewritten more precisely as

IoP 1 (x)P,(x)dx 1 (n +m)! + Pnjm 6n+joddU
( =(2n + 1) (n - m'nUmj' (111)

where

PnT(O)Pi1 (0) - Pnm'(0/)P/(0) (112)

j(j+ 1) - n(n + 1)

and

1, O<m<(M;
U m,M =I 0, otherwise. (113)
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APPENDIX E

EVALUATION OF THE SCATTERED PRESSURE FROM A RIGID SPHERE DUE

TO A CIRCUMFERENTIALLY SYMMETRIC SURFACE NOISE DIRECTIVITY

Applying Eq. 69 to Eq. 67 reduces the integral term for the scattered pressure to

Ie,(n,m,j,m) = a. sin(O')Pm(cos9')P,'(cosB')dO'

ir/22 01 p ,(c s8) O+ 1 sin(O') cos2( ')P,(cosO')P7(cos ')dO'
O(114)

+ • sin(O') cos (0')P1 (cosO')P7(cosO')do'

= a £ Pn(x)P,'(x)dx + + (-1)n+j] x 2 Pn(x)Pjn(x)dx

The latter expression is obtained using the substitutions x cos(0'), dx = -sin(O')dO', and ap-

plying Eq. 78 of Appendix A. For the first integration, apply the orthogonality relation of Asso-

ciated Legendre functions as given in Eq. 79 of Appendix A, and in the second integral, apply

the identity given in Eq. 80 to xP,"(x) and xPjm(x). The second integral therefore becomes

j X2P.(x)Pm(x)dx -

(n - m + 1)(j - m + 1) P.(x)P1I(x)dx

,I'
+ (n - m + 1)(j + m) ] P.+(x)P,! _,(x)dx (115)

(2n +1)(2. +±1)(2n 1) 2j 1) + (n + m )(j - m + 1) 1 0 P .," ,( x)P jm+,(xldx

+ (n + m)(j + m) j P_,'L(x)Pjt 1(x)dx
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In Appendix D it was shown that,

jP,.(x)Pil(x)dx = -1 (n +m)! b~u~ n~b~~d~~~j 16f0 (n+1) (n - m)!
P•()PJ(z~x =(2n + 1) (n - m)!6n'iv'm'n + Prxnj,mtn,,,+.,oddVm,,nUm,,•,. (116)

When this is applied to the integrations of Eq. 115, the second integral of Eq. 114 becomes

jo x 2pg(x)Pj(x)dx =

(n - m + 1)(j - m + 1)Pn+l,j+1,m6 ,n+j+2,oddUm,,n+lUmj+

+ (n - m + 1)(j + m)Pn+1,p.j_,mbn+ioddUm,n+1U ,,J.l

(2n + 1)(2j + 1) + (n + m)(j - m + 1)P.nl,j+1,mbn+j,oddUm,n.lUm,j+I

+ (n + m)(j + m)"Pn-l,j-l,mbn+..-2,oddUm,n-lUm,..i-.

(117)

(n -m+ 1)(j - m + 1) (n + m + 1)!

(2n + 3) (n - m + 1)!

+ (n-m+l)(j+m)(n+m+l)! rr

1 (2n + 3) (n - m + 1)!
+(2n+1)(2j+1) (n+m)(j -m+1)(n+ m-1)!6

+ (2n - 1) (n - m -1)! fll+IU"fl,-I

S(n + m)(j + m) (n + m - 1)! j-_l. ,,-_
(2n - 1) (n - m -1)

Applying this and the delta function identities 6 n±,j,±l = 6 n,j, ,•n±1,1 = b,±2,j, and
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6n+j*2,odd ý- 6 n+j,odd reduces 19, to

119 (n, r, j m (n+rn2)! b6
Ie'(, m~, m)=&2n + 1) (n -m)

(m+ 1)(n +mn+ 1)! 6 n *um~
(2n + 3) (n - in)! "mnI

"+ (j+m) (n+m+i)! b 6 ,Um~~

+ [P +71 (2n +3) (n -rn)!
(2n + 1)(2j + 1) +( - m +1) (n ±~ in)!62,jUm,n-I

+(2n-1) (n-rn-i)!b

(n - mn + 1)(j - M + 1)Pn+lij+i,mUm,n+lUrn,j+i

- 71n~j~dd + (n - mn + 1)( + m)1'n+ljil,mUin,n+lUm,j-i

+(2n + 1)(2j~ + 1) + (n + m)(j - Mn + 1)Pn-l,j+l,mUm,n-lUm,j+l

+ (n + m)(j + m)Pn....,,-i,mUm,n-iUm,j-i
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Substituting this expression into Eqs. 66 and 68 yields

_____ (R ,-Ef, (n -rm n)' Co )

( I p(r,6e12 ) 47rce E (2 + I)T,,T, ( + m)! co 9 ,(Cos 0)

+ ir[/O + -f] f~-j[TTJ + TjTn~

(n-m)! (j-m)'m(o )j(Cs0
mO(n + in)! (j +m)

(U -i + 1) (n + in ± ) njU~~
(2n +3) (n -rn)!

+(i + r) (n +in+ l)! bn+2 ,jUm,n+l
+(2n+3) (n -rn)!

+ (j( m + 1) (n-I + m)!6 _b-,Um~

(+ +m) (n +m)! b~~~-
+(2n - 1) (n - m -

+~~ ErU 7]> bZn+,,odd'E(n-j) [TnT; TTn~
n0O j=O

~em(n m)!(J nm)(COpm)pm 6(OS9
m0 (n + in)! (j+ m)!(CS(C )

-(n - in + 1)(j - in + lYPn+i~j+i,mUnm,v+IUm,,,+l

"+ (n - m + 1)(j + in)Pn+l,,...,mUm,n+lUm,j1l

"+ (n + m)(j - M + 1)Pn,-Ij+l,mUm,n-iUm~j+l

+ (n& + in)(j + m)"P...I,p-I,mUm,n-IUm,j..i
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Note that whenever n + j is odd, C,,j = 2, (-1)'+j = -1 and the limits n = [0, oo]. j = O. "I

can be replaced by n = [1, oo], j = [0, n - 1]. Using these identities, applying Eq. 81 of Ap-

pendix A to the / ± -y terms, and applying Eq. 75 of Appendix A to the o term simplifies

Eq. 119 to

(Ip, 12 4 =47ra (2n + 1)TnT,
IP, 1I2 n=0

n0 n

+ 7r[ + '1] I: E (I,_j)[TflT + TjT*]S ef'PV m (cosO)PTm (cos9)
n=O j=O m=0

(j - M + 1) ( n + m + 1)! b j i~ +
(2n + 3) (n - m)! fi,,m,n+1

+ (j +m) (n+m+ 1)! Umn+
(2n + 3) (n - m)!

+(J-m+l) (n-+rm)! 6-,,jUm,n-...i(2n-1) (n-m-l)! 
(120)

(j + m) (n + m)! (120)
(2n - 1) (n - m -

oo n--1

+ 27r[# - 1E E 6n+o,,dd[TnT, + TiT*] e emPnT(cosO)PT"(cosO)
n=10 m---=0

(n - m + 1)(j - m + 1)P•+i,+i,mUm,n+iU,,j+i

+ (n - m + 1)(j + m)Pn+i.J-i,mUm,n+IUMj-i

+ (n + m)(j - m + 1)Pn,-,j+I,mUm,n-iUm,j+i

+ (n + m)(j + m)Pn.-.Ij-I,mUm,n-IUmj-I
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Eliminating the delta functions and step functions yields an average scattered pressure of

(t =47ra Z(2n + 1)TnTn'

0rr01' n (n + T+1) (n + + +1)!
jE,1It.in E fmP,."'(cOS8)P., m (COS0) (2n +3) (n -rn)!

00

+ D:TnTn-2 + Tn-2 Tn~
n=2

+27r(,8 n2 ( +m)
-- '1CS0 ,,-2(O

E m P0 2 - 1) (n -rn- 2)!

+ EZ[TnT.t] 1: emP m (cos O)Pn-(cos 0) (2n + 1n) (n + in)!
n=1 m=O 2-)(--)

bnI~+j,,dd [T. Tj + T, Tn f .mP.7m (COSO)Pj m (COSO)

(121)

-*(n-m1( - mm+ a+Iui,+

00 n-1 j-1

+ 1: 1: 6n+j,,dd[TnTi* + TiTn*] E enP,,-(cos O)Pfmn(cos 0)

- (n - m + 1)(j + m)P,+Ij-,,m

coon-I j

+ Z 6 +j,,dd[TnT,* + TT:1 E ,P-m(O 0 , CS9
n=1 j0 m=O

- (n + m)(j - rn + l)Pn-lij+i,M

00 n-I j-i

+ 6n+j,,dd[TnTi* + TT1~1 Z, FmP. -OS0)Pj-'(0DS0)
n=2 j=1 =

- (n + m)(j + m)Pn-l1,,-,m.
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APPENDIX F

MATLAB PROGRAMS FOR EVALUATING THE AMBIENT

NOISE SCATTERING FROM INFINITE RIGID AND ELASTIC

CYLINDERS AND FROM RIGID SPHERES
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% cylinfrig elas
0

% This program determines the scattering from an infinite rigid
% cylinderand an infinite elastic cylinder due to a directional

% ambient noise field described by the directivity
% DD(PHI) = Sum[a(m) exp(im*phi)]; -pi/2 < PHI < pi/2

% D(PHI) = Sum[b(m) exp(im*phi)]; pi/2 < PHI < 3pi/2.

% The above directivity function is a general fourier expansion,

% and the program is written so that any directivity of this

% foan can be used. Specifically
% DD(PHI) = alpha + beta*cos(PHI)^2; -pi/2 < PHI < pi/2

% D(PHI) = alpha + gafnra*cos(PHI)^ 2 ; pi/2 < PHI < 3pi/2

% is used. From this directivity function a (m) and b(m) are

% a (0) = alpha + beta/2 a (2) = a (-2) = beta/4

% b(0) = alpha + garra/2 b(2) = b(-2) = garma/4.

clear

% ---- FOURIER COEFFICIENTS- -.
alpha = 0.33/75.4;
beta = 1.0/75.4;
gamra = 33.0/75.4;
mvec = [-2 0 2]; % m for nonzero coeff.

am = [beta/4 (alpha + beta/2) beta/4]; % [a(-2) a(0) a(2)]

bm = [garna/4 (alpha + gamma/2) ganma/4]; % [b(-2) b(0) b(2)]

apb = am + bm;
amb = am - bm;

% ----.. V..UMER VARIABLES----
ka = 20.0; % nondimensional wavenumher

kamult = [16 32]; % observation points are at

kR = ka*kamult; % one and two boat lengths

kRka= [kR(1) kR(2) ka];
numka = length (kRka);
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%----ANGLE VALUJES--
phirnin = -pi/2.O0;
phirrax = 3*pj/2;
nurtphi = 201;
phistep = (phirnax-phimrin) /(nunrphi-1);
phi = phimnin:phistep:phirnax; % angle vector

% ---ELASTICITY CONSTANTS- --
cop = 1/3.5; % c/op -- sound speed ratio
rhosrho = 7.500; % rhos/rho -- density ratio
ha = 1/100; % h/a -- thickness/radius ratio
Cmega =ka*ccp; % nondirrensional f req. paramreter
beta~sqr = (ha A2)/12;

% --PPOGRAM PPEPAPATICN--
mxr=30; % sum to rraxnr rather than inf.

rnan = max (abs (mvec))
iplusn.(0+1) = 1;
for n =1 :raxnr+maxm

iplusn(n+1) = j*iplusn(n);
end %for n-i
jimphi =i*mvec.I*phi;

einphi -exp (irrphi) ;

% ---- BESSEL CALL---
[J,ci3,Y,dY] = vJdJYdY(maxrir+maxm~k~ka); % J(n,k)=J(n,kR(k));
H =J +i*Y; % J (n,,numnka) = J (n,.ka)
dHka = dJ(:,nurnka) + i*dY(:,nurrka); % only need H' (ka)

% -ELASTICITY TEJRMS----
for n =0: maxnr-Iian

nsquare(n+1) = n A2;

nfou~rth(n+l) = n A4;

nsixth(n+1) n nA6;
end %for n-2
am2n2 = crcegaA"2 -suae

nurn =an2n2*2*i*ccp/pi;

deni =Q1ega*H (: ,numka) .*on2n2.;
den2 = a*rhosrho*dHka/ccp;
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clen3 = CmegaA 4-Omega"2 * (1+nsq32are+betasqr*nfoufth) +betasqr*nsixth;
den = denl.-cen2.*den3.';
elastic = num.'./d~en;

for R--l : nmka-l
coeffn r = iplusn.'.*dJ(:,.numka).*H(:.,R)/dHka;
coeffr r = coni {coeffn r);

coeffn e = iplusn.'.*(dJ(:,nurrka)+elastic).*H(:,R)./dHka;
coeffr e = coni (coeffn e);-

sunim r = zeros (phi);
sumim e =zeros(phi);
for 'j = :length(mvec)
m = mvec (j);
sum rir = 0;
stum~e = 0;
for n = -mnaxnr :maxnr

sum nr = surnn r + coeffn r(abs(n)+1)*coeffr r(abs(n+m)+l);
Sum ie = Sumn e + coeffn e(abs(n)+1)*Coeffr e(abs(n+m)+J-);

end %for n--3
sumIm r = surnIm r + apb (j) *eirrphi (j..)*sumff r;
sumim e = stumim e + apb (j) *einphi (j,:)*sumff e;

end %for j-1
sum-tm r = pi*sumnimnr;
sumlin e = pi*sumlln e;

sum2rn r = zeros (phi);
sun2rm-e = zeros (phi) ;
for j = 1: length (nvec)

m = mvec(j);
surmrr r = zeros (phi);
suirrir e = zeros (phi);
f or n = -maJxnr :nmaxnr
for r = -maxnr:maxrr

oddi = (_1) A(n~r+M);
if odd ===-1

en~rphi -7 exp(..* (n-r)*phi);
chinr r = coeffn r(abs(n)+1)*coeffr r(abs(r)+l);
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sunwir r = surnnr -r + (-)" nrrr1 2 *hn ~npi(-~)

chinr e =coeffn e(abs(n)+1)*coeffr e(abs(r);1);
sumnr e = sumnr e + (-1)A((n-r+rni-)/2)*chiflr e*enrphi/(n--r+rn);

end % if--odd
end %for r--1
end %for n--4
surn2m r = sunr2m r + amb (j) *surnnr r;
sum2m e = suT)2m e + amb (j) *surnnr e;

end %for j--2
sum2m r = 2*sum2m r;
sum2rn e = 2*surn2r e;

sigtonoise r(R,,:) = (surn3.mr + surn2m r)/(pi*apb(2));
sigtonoise e(R,:) = (surnim e + surn2m e)/(pi*apb(2));
TS r(R,:) = 1O*loglO(sigtonoise r(R,.:));
TS e(R,:) = 1O*loglO(sigtonoise e(R,,:));

end %for R--2.
end
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% sphkrig dir

% This program determines the scattering from a rigid sphere due to a
% directional ambient noise field described by the directivity
% D(THETA) = alpha + beta*cos(THETA)A2; 0 < THETA < pi/2
% DD(THETA) = alpha + gamma*cos(THETA)A 2; pi/2 < THETA < pi

clear

% �-- DIRECTIVITY COEFFICIENTS�---
alpha = 0.33/75.4;
beta = 1.0/75.4;
gamma = 33.0/75.4;

% ----WAVNBER VARIABLES----
ka = 5.0; % nondimensional wavenumber
kamult = [16 32]; % observation points are at
kR = ka*kamult; % one and two boat lengths
kRka= [kR(1) kR(2) ka]I;

% -- ANGLE VAILES----
numtheta = 101;
thetamin = 0;
thetamax = pi;
deltatheta = (thetamax - thetamin) / (numtheta - 1);
theta = thetamin:deltatheta:thetamax; % angle vector

% ----- PROGRAM PREPAPATICN -----
maxn = 15; % sum to maxn rather than infinity
ivec (0+1) =1;
epsm(0+1) = 1;
minuslvec(0+1) = 1;
n2vec(0+l) = 1;
for n=. :maxn

ivec(n+1) = i*ivec(n);
minuslvec (n+l) = (-i) ^n;
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n2vec(n+l) = 2*n+i;#
epsrn(n+i) = 2;

end % for n-i

fact(0+i) = 1;
for nr- : 2*maxn+l

facd~n~l) = n*fact(n);

for n=0 :axnm
for nrr O:raxn

leg~fact,_rat (n+1rnm+1) =0;
coeff2 (n+,,rn+i)=0;
coeff3 (n+l,rn+i) =0;

coeff 4 (n+l, m+i) =0;
end % for irn--i.

end % for n-3
for n=0 :mawm

for nrn=:n
leg~fact rat (n+i,rn+l)=fact (n-n+i) /fact (n+rn+1);

coeff2 (n+i,rn+i)=2* ((n-rn--) *fact (n+m+1+1) )/ ((2*n+3) *fact (n-m+i));

coeff3 (n+,,rn+i)=2* ((n+rn) *(n-rn)*fact (n+rn+1)) / ((2*n-1) *fact (n-rn-i-));

coeff4 (n+i,rn+l)=2* ((n-rn) *(n-rr-i) *fact (n+rn+i) )/ ((2*n-1) *fact (n-rn+i));

end % for mr--2
end % for n-4
coeff2 0:, 0+1) =coeff`2 (:,,0+1) /2;
coeff3(:,O+i)=coeff3(:,0+i) /2;
coeff4 (:,,0+l)=coeff4 (:.0+i) /2;

for n=0 :raxn+1
for j=0 :niax+i

POcoeff (n+i,, j+i) =0;
end % for J-1

end % for n-5

for n=0 :iaxn+i
for j--n-J.:-2:0

P~coeff(n+i, j+1)=i/ (j* (j+i)-n* (n+i));
end %for J-2

end % for n-6



% ----MAIN PROGRAM---

%----BESSEL~ CALL---
[in djn yn dyn] = bessel,_sh(maxn,kRKa);
hn = jn + yn

dhn = djn + i*jyfl;
kappa 1=ivec.*(cijn(:.,3) .*hn(:,rl)./cihn(:,,3))2';
kappa 2=ivec. * (dijn(:, 3) .*h(:2) ./dhn(:3)) 5

TnTj_1 = kappa 1 *conj (kappaý_1)+conj (kappa 1.')*kappa_1;
TnTj 2 = kappa_22I*conj (kappa_2)+conj(kappa_2?.')*kappa 2;
TnTnl- = kappa_1.*conj (kappa_1);
TnTný 2 = kappa_2.*conj (kappa_2);

[PO~dPO] = legencirePrim(rnaxn+l,0);

sumi 1=-n2vec*TnTn 1.';
surrl_2=ni2vec*TnTn_2.;

% --- Theta loop--
f or k=1 : numrtheta

DrP dP1 = LegendrePnm(raxnrcos (theta (k)));
Pcos = leg~fact rat.*P;

% -StA2 -----
surn2 1=0;
sum2_2=0;
for n=0 :Iaxn

surn2m=0;
for m7-0: n

sumafrcsum2m+Pcos (n+1,n+l) *Pcos (n+1,iml-l) *coeff2 (n+l,m+l);
end %for m--sum2

_Im _lsu2 +TnTh_1 (n+1) *suflQ~f;
sr2suriirn2_2+TnTn_2 (n+1) *sum~m;

end %for n-siiQ2
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----1UM0-

for n=ý2:inaxn
surn3m=O;
for nr=0: n-2

sum3irr-surn3m+Pcos (n+1,. n+1) *Pcos (n-2+1,,rn+1) *coeff3 (n+1,m+1);
end %for n-t--stun3
surn3_1=sum3_1+TnTj-1(n+1,n-2+1j*surn3m;
sum3_2=sum3 2+4TnTj2(n+1,n-2+1)*surn3m;

end %for n--suim3

% --- SUM4-----
sum4 1=-0;
sum472=0;
for n=1l:max-i

sum4IT=0
for nr-0: n-1

sum4mcr=sum4xn+Pcos (n+1,,m+1) *Pcos (n+1,rn+1) *coeff 4 (n+1,m+1);
end %for m--sum4
sum4_1=sum4_1+TnTn1 l(n+1) *sum4ln;
sum4_2=-suin4_2+TnTn_2 (n+l) *sum4m;

end %f~r- n--su-m4

sumn5_1=0;
surn52=0;
for n 1:naxn
for j =n-l:-2:0
SUT5m-0;
for m-=0: j
P~terrr-P0 (n+1-i1,,m+1) *dPO(j+1+1,rn+1) -dPO (n+1+1,in+l) *POJ(j+1+1,rn+1);
mc~oeff~epsm(m+1) *(n-m+1) *(-l;
sixn5rp=surn5rrn+Pcos (n+1,m+1) *Pcos (j+l.,m+1) *rr-off*POterm;

end %for m--sum5
surn5_1 =stun5_1+surn5r*TnTj_1(n+1,j+1)*Pocoeff(n+1+1,j+1+1);
suni5_2 = sumn5_2+sum5m*TnT.2 (n+1, j+1) *P~coeff(n+1+1, j+1+1);

end %for J--sum75
end %for n--surn5
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% ----- SUM6 ---
siin6_1=0;
sum6_2=0;
for n = 2:niaxn
for j = n-1:-2:1
sumn~r=0;
for m-=0: j-1
P~term=-PO (n+1+1,m+1) *ipo (j-1+11,m+1)-d]PO (n+1+1,m+1) *PQ(j-1+1,rn+1);
rncoeff~epsm(m+1) *(n-m+1) *(j+m);

sum6rrr-sixn6m+Pcos (n+1,m+1) *Pcos (j+1,m+1) *mof f*POterm;
end %for rm--surn6
sum6_1 = sum6_1+sum6m*TnTj 1(n+1,,j+1)*P~coeff(n+iU1.j-1+1);
sum6_2 = surn62+sum6m*TnTj-2(n+1,,j+1)*P~coeff(n+1+1,j-1+1);

end %for j--surn6
end %for n--sum6

% --- SUM7-----
sizn7_1=0;
surn7_2=0;
for n lunaxn

fo j n-1:-2:0
sum7mr=0;
for ni=0:j
P~tenn-PO (n-1+1,rn+1) *dPO (j+1+1,.m+1) -dlPO (n-1+1, m+1) *PO (j+1+1..n-t+1);
ncvoeff=epsm(n+1) * (n+m) *(j-m+1);
sum7m--sum7m+Pcos (n+1,mi+1) *Pcos (j+1,rn+1) *mcef f*P~ter-;

end %for m---surn7
sum7_1 = siin7_1+strn7m*ThTj 1(n+1.,j+1)*P~coeff(n-1+1,j+1+1);
sum7_2 =sum7_2+sum7m*TnTj2--(n+1,j+1)*P~coeff(n-1+1,Fj+1+1);

end %for j-sum7
end %for n-surn7

%-SUM8---
sum8_1=0;
sum8_2=0C;
for n = 2:maxn
for j = n-1:-2:1

sumf8n-r-0
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for rnr=O: j-1

mcoeff~epsm(m+1) *(n+m) *(j+m);

sum8rrf--sunm~r+Pcos (n+1, m+1) *Pcos (j+1, m+1) *mef f *POterrn;
end %for rrn--sumi8
sum8_1 = sum8 1+sum8rn*TnTj_1(n+1.,j+1)*POcoeff(n-1+1,j-1+1);
surn8_2 = surn8_2+sumnrn*TnTj-2(n+1, j+1) *POcoeff (p-1+1, j-1+1);

end %for j--sum8
end %for n--sum8

p1_2=surnl_2;
p2_1=(s=2_1+sum3_1+sum4_1);
p2_2= (surn2_2+surn3_2+sur4_2) ;
p3_1=(surn5_1+sum6_1+surn7_1+sun8_1);
p3L2=(surn5_2+sum6_2+sum7_2+sum8_2);

Pressurel (k) =4*pi*alpha*pl 1+2 *pi* (beta+ganrn) *p2_1+2*pi* (beta-garrra) *p3_1;
Pressure2 (k) 4 *pi*alpha*p1 2+2 *pi* (beta+galtn) *p2_2+2*pi* (beta-garrr) *p3_2;
end % for theta

pn=2*pi* (2*alpha+ (1/3) *(beta+gairra));
TS1=1O*loglO (Pressure/pn);
TS2=1Q*loglO (Pressure2/pn);
TS (1, :)=TS1;
TS (2, :)=TS2;

end



THIS PAGE INTENTIONALLY LEFT BLANK

56



REFERENCES

1. Urick, Robert J., Principles of Underwater Sound, 3 rd Ed., McGraw Hill, Inc., New York.

N.Y. (1983).

2. Burdic, William S., Underwater Acoustic System Analysis, 2 "d Ed., Prentice Hall. Engle-

wood Cliffs, N.J. (1991).

3. Yam, Philip, "Sound System: Using the Ocean's Noise to Image Undersea Objects",

Scientific American, (Jul 1992).

4. Junger, Miguel C., and Feit, David, Sound, Structures, and Their Interaction, 2 nd Ed.,

MIT Press, Cambridge, Mass. (1986).

5. Abromowitz, Milton, and Stegun, Irene A., Handbook of Mathematical Functions, Dover

Publications, Inc., New York, N.Y. (1972).

6. Miller, G. N., "Test Module Inputs", PSI Technical Report ATD 89-067 (May 1991)

7. Gradshteyn, I.S. and Ryzhik, I.M., Table of Integrals. Series, and Products, Academic

Press, Inc., San Diego, Calif. (1980).

57



THIS PAGE INTENTIONALLY LEFT BLANK

58



INITIAL DISTRIBUTION

Copies CENTER DISTRIBUTION

4 ONR Copies Code Name

1 122 A. Tucker 1 70 M. M. Sevik

1 122A2 R. Vogelsong 1 701 G. Smith

1 122R3 G. Main 1 7022 G. M janik

1 233 G. Remrnners 1 7023 W. K. Blake

NAVSEA 1 7024 D. Felt

1 05TC CDR Coulter 1 7025 R. J. Cantrell

PEO SUB 1 7026 Y. N. Liu

1 XT3 G. Mossman 1 7027 D. J. Vendittis

NUWC NLON 1 7035 G. M. Jebsen

1 311 R. P. Radlinski 1 7301 J. R. Peoples

12 DTIC 1 74 M. L. Montroll

2 Cambridge Acous. Assoc. 1 7403 M. L. Rumerman

1 M. Junger 1 741 D. C. Honeycutt

1 J. Garrelick 8 745 J. Niemiec

745 P. Arveson

745 J. Dlubac

745 R. L. Honeycutt

745 S. Johnson

745 K. Jones

745 J. Maxwell

745 S. Schreppler

10 343 Document Control

1 3421 TIC (C)

1 3422 TIC (A)

59


